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We present a measurement of the top quark mass using tt̄ candidate events for the lepton+jets
decay channel. The top quark mass is extracted using the unbinned maximum likelihood method with
the probability density function evaluated for each event using leading-order tt̄ and W+jets matrix
elements and a set of parameterized jet-to-parton-mapping functions. In addition to the top quark
mass the likelihood function is maximized with respect to a jet energy scale correction, constrained
in situ with the hadronic W boson mass, and an approximate fraction of the well reconstructed tt̄
signal events in the candidate sample. We describe the method, present statistical and systematic
uncertainties for 578 observed candidate events, corresponding to integrated luminosity of 3.2fb−1of
pp̄ collisions data collected with the Tevatron CDF II detector at Fermilab and requiring exactly one
energetic lepton, large missing energy, exactly four energetic jets with absolute value of pseudo-rapidity
less than two and with at least one of the jets identified as coming from a b-quark. We measure a top
quark mass mt = [172.4± 1.9] GeV/c2 .

Preliminary Results for 2009 Conferences
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I. INTRODUCTION

The top quark is the heaviest known fundamental particle. The top quark mass is an intrinsic parameter of the
Standard Model and its precise measurement can therefore provide constraints on other parameters of the model,
most pertinently the mass of the Higgs boson. It is important to measure the top quark mass in order to test and
understand the Standard Model and its extensions.

In this note we present an updated measurement of the top quark mass using the matrix element analysis technique
and the tt̄ lepton+jets decay channel candidate events. The previous measurement using this technique resulted
in mt = 170.8 ± 2.2(stat + JES) ± 1.4(syst)GeV and used 955 pb−1 of data [1]. This measurement uses CDF data
between February 04 2002 and August 24 2008 corresponding to an integrated luminosity of 3.2fb−1.

and measure the top quark mass mt = [172.4 ± 1.9] GeV/c2 .

II. SELECTION OF DATA AND MONTE CARLO SAMPLES

The CDF detector is described in detail in [2]. Our analysis requires all data and Monte Carlo events to pass criteria
which include requiring:

• Exactly four well reconstructed jets with |η| less than 2 and transverse energy ET greater than 20 GeV

• At least one of the jets is identified as coming from a b-quark, using Secondary Vertex tagging algorithm and
fully operational Silicon Tracking detector.

• Exactly one well reconstructed high PT lepton

• Missing transverse energy ET/ is greater than 20 GeV

All background events are simulated using Monte Carlo except for QCD, where events are taken from another data
sample and have the same requirements for jets, but not for leptons.

For our analysis, we use CDF dataset which includes all data collected between Feb 04, 2002 and Aug 24, 2008
and represents approximately 3.2fb−1 of data. We find a total of 578 candidate events passing our requirements for
analysis.

Our signal MC samples are all Pythia [3] generated tt̄ with various top quark masses. Our nominal sample has a
mass of 175 GeV/c2. We use another 16 samples with masses ranging from 161 to 185 GeV/c2. Each of these samples
has more than one million events. W + jets and Z + jets background Monte Carlo is generated using Alpgen plus
Pythia. Diboson samples are generated with Pythia. Single top samples are generated with MadEvent + Pythia. Table
I gives the expected number of signal and background events.

To test our event selection and background estimation, we have plotted several variables from our events. Figure
17 shows plots for some variables from our 578 selected candidate events compared to the expected distribution from
our signal and background modeling. Many plots may be found on our public web page.

TABLE I: Number of expected signal and background events corresponding to the total integrated luminosity of 3.2fb−1.

sample # of events
tt̄ signal 425.0± 58.9
Wbb̄ 39.0± 12.7
non-W 25.0± 20.5
W + 4p 22.5± 5.7
Wcc̄ 20.3± 6.7
Wc 10.7± 3.6
WW 4.2± 0.5
Z+ light flavour 3.9± 0.5
single top (s-channel) 3.3± 0.3
single top (t-channel) 3.3± 0.3
WZ 1.5± 0.2
ZZ 0.4± 0.1
total 559.2± 67.0
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III. MATRIX ELEMENT ANALYSIS TECHNIQUE

We extract the top quark mass using the unbinned maximum likelihood method with the likelihood function

L(α; #x) =
N∏

i=1

P (#xi;α), (1)

where #x are the measured quantities in the sample of N candidate events and the likelihood parameters #α are the
top quark mass, mtop; the jet energy scale correction, ∆JES , defined as the number of sigmas by which each jet
is shifted from its measured value; and νsig , the approximate fraction of well reconstructed signal events in the
candidates sample. Signal events are defined as events consistent with leading order production of tt̄ pair decaying
into the lepton + jets channel. The probability density function (p.d.f.), P , is calculated for each event in the final
sample and contains p.d.f.’s describing the dominant physical processes contributing to the events in the likelihood. In
the case of the lepton + jets decay channel, these processes are tt̄ production and W + jets production, the dominant
background. We make the approximation that these two processes fully describe each event in our final sample and
are statistically independent from each other. We call them signal Ps and background Pb probabilities and form the
event p.d.f. P as the linear combination

P (#x;mt, ∆JES , νsig ) = νsig Ps(#x;mt, ∆JES ) + (1− νsig )Pb(#x; ∆JES ), (2)

where the constraint 0 ≤ νsig ≤ 1 ensures the sum of the two normalized p.d.f.s is itself properly normalized. These
p.d.f.s for the processes are defined in the kinematic phase-space of all possible measurements. Since in practice
this phase-space is always limited by the physical properties of the detector apparatus and final sample selection, we
introduce an overall acceptance function, Acc(#x), describing these effects. The acceptance is defined as the fraction of
fully reconstructed events passing selection out of the total possible for a given set of measurable parameters (#x):

P ′(#x;α) = Acc(#x)P (#x;α). (3)

This acceptance is independent of the underlying process and is solely a property of the detector and selection proce-
dure. It is also independent of the likelihood parameters and any overall constant (with respect to the parameters)
factor in the product of Equation 1 has no effect on the outcome of the likelihood maximization. However this accep-
tance term contributes to the expression for the p.d.f. normalization integral N(mt, ∆JES ) as the mean acceptance,
which does depend on the parameters of the likelihood.

The explicit expression for the logarithm of the likelihood function used in this analysis is given below:

logL(mt, ∆JES , νsig ; #x) = −
N∑

i=1

log

[
νsig

Ptt̄(mt, ∆JES )
σ(mt)Acc(mt, ∆JES )

+ (1− νsig ) νbkg PW+jets

]
(4)

where N is the number of the candidate events in the final sample, σ(mt)Acc(mt, ∆JES ) = N(mt, ∆JES ) is the
overall normalization for the signal p.d.f. and νbkg is the normalization term for the background p.d.f..

This function (Equation 4) is first maximized with respect to the approximate signal fraction νsig using MINUIT
[5]. After taking the profile at maximum νsig our log likelihood function is calculated on a two dimensional grid. The
top mass and the jet energy scale correction ∆JES are then extracted using a two-dimensional fit to the likelihood
function evaluated on the grid, and the statistical uncertainty associated with the measurement is described by the
ellipse corresponding to a change of 0.5 from the parabola’s maximum. Thus in our method the statistical errors are
always symmetric.

The measured uncertainty, σmeasured
mt

, represents the overall statistical uncertainty on the top mass, and therefore
must include the uncertainty associated with the measured ∆JES . We therefore take σmeasured

mt
along the major axis

of the ellipse. Similarly, σmeasured
∆JES

is also taken along the major axis of the ellipse.
It would be prohibitively difficult to parameterize Acc(#x) for all #x, but the mean acceptance Acc(mt, ∆JES ) is

independent of #x and can be easily extracted from our Monte Carlo:

Acc(mt, ∆JES ) =
Naccepted

Ngenerated
(5)
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FIG. 1: Approximation function for the mean acceptance Acc(mt, ∆JES )).

The simulated acceptance distribution is fitted to a 2D 4th order polynomial (Figure 1) and that function is used in
the measurement.

The event p.d.f. for a given physical scattering process is constructed by inputting measured quantities to its
normalized parton-level differential cross-section and integrating over any unknown variables. Measured quantities
(#x) are translated into parton level (#y) with the appropriate resolution using a transfer function.

In this analysis, we assume our detector does a good job of measuring all the components of the electron and muon
momenta. Therefore, we consider the transfer function to be δ-functions for these quantities. However, our detector
has significant resolution effects in jet energy. We parameterize the jet energy response of our detector with a jet
energy transfer function, W ,assuming the response is independent for each jet.

W (Ep, Ep, ∆JES ) = W (Ex
i , Ey

i , ∆JES ), is the probability of observing a jet with energy Ej when a parton with
energy Ep is produced. It satisfies the normalization condition

∫
W (Ej , Ep, ∆JES )dEj = 1, so that each parton

produced corresponds to exactly one detected jet.
Our jet energy transfer function (ETF) is parameterized as a double Gaussian whose main variable is δ = E′

j −Ep -
that is, this difference between the jet energy and the parton energy.

W (E′
j − Ep) = W (δ) =

1√
2π(p2 + |p3|p5)

[
e
−(δ−p1)2

2p2
2 + |p3| · e

−(δ−p4)2

2p2
5

]
(6)

E′
j is the measured jet energy Ej adjusted with the floating ∆JES . The energy transfer functions for light and

b-quarks are shown in Figures 2 and 3.
In previous versions of this analysis the jet angles were assumed sufficiently well measured that their transfer

functions could be approximated by Dirac delta functions. That approximation was found to be invalid in the case of
the angle between the two hadronic W jets, α12, and in fact the measurement of that angle was seen to cause a bias in
the hadronic W boson mass. Since the method relies on an accurate measurement of the W mass for the in-situ ∆JES

calibration, it was important for us to introduce angular transfer functions (ATFs) to account for that effect. These
ATFs are binned in cos(α12), and are parameterized by a skew-Cauchy distribution plus two Gaussians using a fit to
Pythia Monte-Carlo events (Figures 4 and 5). We also introduced a similar second set of ATFs to correct a similar bias
observed in the angle between the hadronic W boson and b-quark, αWb, which affected the hadronic top quark mass.

Integration over the ATFs in cos(α12) and cos(αWb) corrects the observed bias in the hadronic W boson and top
quark masses, and also accounts for the angular resolution effects to which we are most sensitive (those that affect
the W and top masses).
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FIG. 2: Energy transfer functions for light quarks.

IV. METHOD VALIDATION AND CALIBRATION

The method validation checks the accuracy and consistency of the measured quantities. We observe shifts in the
residual mass as we move from ideal to more realistic event sample composition (Table IV) which we must correct
for in our method calibration. We perform a series of linearity tests based on pseudo-experiments using Monte Carlo
simulated events. The linearity tests check the response of the method to the three relevant input parameters: mt ,
∆JES and input signal fraction f . If the residuals or pull widths display any dependence on any of those parameters,
a calibration with respect to that parameter will be necessary.

PE Sample Residual mean shift
mt , GeV/c2 ∆JES

good events only 0.0 ± 0.1 −0.09 ± 0.02
good, but all comb −0.6 ± 0.1 −0.04 ± 0.02
all signal −0.8 ± 0.1 −0.23 ± 0.02
signal and background −1.2 ± 0.1 −0.34 ± 0.02

First, we see that residuals and pulls are constant with respect to the input mt . A set of linearity plots check the
response to input ∆JES (Figures 6 and 7). Both mass and ∆JES residuals depend on input ∆JES . We correct for
it with the “ ∆JES calibration functions” as follows:

∆JES
∆JES corrected =

∆JES
measured + 0.351
1− 0.148

(7)

m ∆JES corrected
t = mmeasured

t + 1.152− 0.384 ∆JES
∆JES corrected (8)
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FIG. 3: Energy transfer functions for b-quarks.

The performance of the calibration functions can be tested by re-running the PEs with the calibration in place. The
results are shown in Figures 8 and 9. The correction removes the dependence on input ∆JES .

The final test is the dependence on input signal fraction f . Note that the signal fraction calibration is performed
after the ∆JES calibration, and so the PEs used in the following plots were all corrected using Equations 7 and 8. Both
the residuals and pull widths show a strong dependence on f . This is expected, as the bias caused by background
events naturally increases as f is decreased. Figures 10 and 11 show the dependence of the measured quantities on
f .

However, our method does not measure f , but it is strongly correlated with measured νsig . We therefore
parameterize the calibration with respect to measured νsig (Figures 12 and 13 ):

mfinal
t = m ∆JES corrected

t + 5.940− 14.083 νsig + 7.662 νsig
2

σfinal
mt

= smσmeasured
mt

sm = 1.829− 1.575 νsig + 1.061 νsig
2 (9)

∆JES
final = ∆JES

∆JES corrected + 1.426− 3.337 νsig + 1.690 νsig
2

σfinal
∆JES

= sJσmeasured
∆JES

sJ = 1.976− 1.771 νsig + 1.222 νsig
2 (10)

Post-correction, the dependencies on f are removed. Just as with the “ ∆JES correction”, the actual dependence
of the residuals on the signal fraction has a small effect on the correction since the signal fraction varies only in the
range from 0.6 to 0.8.
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FIG. 4: Angular transfer functions parametrization for α12

The mass and ∆JES residuals along with the pull widths after all corrections, are shown in Figures 14 to 15.
The errors are inflated according to the corrections (Equations 9 and 10) and Histogram in the Figure 16 shows an
example of the distribution of statistical uncertainties expected for the mass measurement.

V. SYSTEMATIC UNCERTAINTIES

We evaluated the expected systematic uncertainties of our measurement technique and the results are summarized
in Table II. Below we briefly summarize the standard procedures used for evaluating each systematic effect.

We evaluate our Monte Carlo generator uncertainty by comparing results obtained from 175 GeV/c2 MC samples
created with different MC generators (Pythia and Herwig). The jet energy scale residual systematic is measured by

TABLE II: Contributions to the total expected systematic uncertainty.

Systematics source Expected contribution
MC Generator 0.70
∆JES Residual 0.65

Color Reconnection 0.56
B Jet 0.39

Background 0.37
ISR/FSR 0.24

Multiple Hadron Interaction 0.22
PDF 0.13

Lepton Energy 0.12
Calibration 0.12

Total 1.3
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FIG. 5: Angular transfer functions parametrization for αWb

summing in quadrature the uncertainty resulting from each level of the CDF jet corrections. The color reconnection
uncertainty is evaluated by comparing results from MC samples with and without color reconnection. The b jet
systematic uncertainty is taken as the sum in quadrature of three separate uncertainties. First, we re-weight events to
scale a 1 sigma shift in the semi-leptonic branching ratios. Next, we re-weight events to model different parameters
in the fragmentation model. Finally, we measure the effect of a 1 sigma shift in the b jet energy scale. We evaluate
our background systematic by measuring the shifts caused by using different signal fraction, relative contributions
from each background source, and shapes from Q2 values in our pseudo-experiments. Initial and final state radiation
(ISR/FSR) uncertainty is estimated from MC samples with increased and decreased initial and final state radiation.
The Multiple Hadron Interaction systematic is measured by re-weighting events to account for mismodeling of the
luminosity profile and minbias events in our MC. The PDF uncertainty is taken as the sum in quadrature of three
uncertainties. First, we look at the difference between two samples with different values for ΛQCD. Next, we re-
weight our events to scale the percentage of gluon-gluon fusion events up from 5% to 20%. At the end we re-weight
our events based on 20 different pairs of CTEQ6M eigenvectors. The lepton energy systematic is taken as the sum in
quadrature of the systematic uncertainties from a 1 sigma shift in lepton energy evaluated independently for electrons
and muons. Finally, we evaluate our calibration uncertainty by varying our calibration functions within their 1 sigma
uncertainties.

VI. THE MEASUREMENT

We use CDF dataset which includes all data collected between February 04 2002 and August 24 2008 and corre-
sponds to an integrated luminosity of approximately 3.2fb−1. Our selection procedure results in 578 candidate tt̄
lepton+jets events and we measure

mt = [172.4 ± 1.4(stat + JES) ± 1.3(syst)] GeV/c2 = [172.4 ± 1.9] GeV/c2. (11)
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FIG. 6: Measured ∆JES vs input ∆JES . Colors show different top quark masses used in the simulation: 165(red), 175(green)
and 185 GeV/c2(blue).

The corresponding values of ∆JES and νsig , and their statistical uncertainties, are

∆JES = 0.3 ± 0.3, (12)

νsig = 0.63 ± 0.03. (13)

The log likelihood contours on Figure 16 show the result.
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